Members of the c1/pl1 regulatory gene family mediate the response of maize aleurone and mesocotyl to different light qualities and cytokinins.

نویسندگان

  • Paolo Piazza
  • Antonia Procissi
  • Gareth I Jenkins
  • Chiara Tonelli
چکیده

We investigated the role of transcription factors (R, SN, C1, and PL) in the regulation of anthocyanin biosynthesis by different light qualities (white, red, blue, and ultraviolet) and by cytokinin in maize (Zea mays). We analyzed anthocyanin accumulation, structural gene expression, and regulatory gene expression in the seed aleurone and the seedling mesocotyl. In the mesocotyl, white, blue, and ultraviolet-B light strongly induced anthocyanin accumulation and expression of two key structural genes. In contrast, red light had little effect. Cytokinin enhanced the response to light but was not sufficient to induce anthocyanin accumulation in darkness. Plants with the pl-bol3 allele showed high levels of anthocyanin accumulation in response to light, whereas those with the pl-W22 allele did not, demonstrating the importance of pl1 in the light response. The expression of the pl-bol3 gene, encoding an MYB-related transcription factor, was induced by light and enhanced by cytokinin in a very similar manner to the structural genes and anthocyanin accumulation. Expression of the bHLH (basic helix-loop-helix) Sn1-bol3 gene was stimulated by several light qualities, but not enhanced by cytokinin, and was less well correlated with the induction of anthocyanin biosynthesis. In the aleurone, white, red, and blue light were effective in stimulating anthocyanin accumulation and expression of the MYB-related gene C1. The bHLH R gene was constitutively expressed. We conclude that specific members of the MYB-related c1/pl1 gene family play important roles in the regulation of anthocyanin synthesis in maize in response to different light qualities and cytokinin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The developmental expression of the maize regulatory gene Hopi determines germination-dependent anthocyanin accumulation.

The Hopi gene is a member of the maize r1 gene family. By genetic and molecular analyses we report that Hopi consists of a single gene residing on chromosome 10 approximately 4.5 cM distal to r1. Hopi conditions anthocyanin deposition in aleurone, scutellum, pericarp, root, mesocotyl, leaves, and anthers, thus representing one of the broadest specifications of pigmentation pattern reported to d...

متن کامل

Cloning and Expression Analysis of ZmERD3 Gene From Zea mays

Background: Stresses (such as drought, salt, viruses, and others) seriously affect plant productivity. To cope with these threats, plants express a large number of genes, including several members of ERD (early responsive to dehydration) genes to synthesize and assemble adaptive molecules. But, the function of ERD3 gene hasn’t been known so far.Objectives:</strong...

متن کامل

Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes

Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...

متن کامل

Light-Dependent Spatial and Temporal Expression of Regulatory Genes in Developing Maize Seeds

In maize, activation of the anthocyanin pathway represents an excellent model system for studying the interactions between an externa1 factor, such as light, and interna1 factors that regulate plant and seed development. By analyzing in detail the aleurone and pericarp seed layers, different developmental windows for light have been found in the two tissues-the former in the advanced stages of ...

متن کامل

Recently duplicated maize R2R3 Myb genes provide evidence for distinct mechanisms of evolutionary divergence after duplication.

R2R3 Myb genes are widely distributed in the higher plants and comprise one of the largest known families of regulatory proteins. Here, we provide an evolutionary framework that helps explain the origin of the plant-specific R2R3 Myb genes from widely distributed R1R2R3 Myb genes, through a series of well-established steps. To understand the routes of sequence divergence that followed Myb gene ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 128 3  شماره 

صفحات  -

تاریخ انتشار 2002